DISEÑO PARA ALTA TENSION

Clave: MCIEA - 0220

Línea de investigación: Transmisión, distribución y utilización de la energía eléctrica

Tipo: Asignatura optativa

Horas teoría: 48
Horas prácticas: 0
Horas trabajo adicional: 120
Horas totales: 168
Créditos: 6

Pre-requisitos: Cálculo de Campo Electromagnético

Correquisitos:

OBJETIVO

Que el alumno aplique técnicas modernas de diseño y análisis de dispositivos en alta tensión, considerando la interacción entre los diversos materiales aislantes y el medio en el que se encuentra inmerso el dispositivo, incluyendo la aplicación de estos principios al diseño de aparatos representativos en la tecnología de alto voltaje.

APORTACIÓN AL PERFIL DEL GRADUADO

Esta materia proporciona al alumno conocimiento sobre los métodos de diseño aplicables a estructuras que estarán sujetas a tensiones elevadas de operación. La demanda de energía eléctrica crece a un ritmo sostenido en todo el mundo, lo cual conlleva la necesidad de recursos humanos en las áreas relacionadas a la fabricación y operación de equipos eléctricos en alta tensión.

Algunos aspectos aportados por esta materia son:

- Apreciación de las aplicaciones reales de los conceptos y ecuaciones de la teoría electromagnética.
- Familiarización con las propiedades y aplicaciones de materiales dieléctricos.
- Aplicación de paquetes computacionales basados en el método de elemento finito u otros métodos numéricos como herramienta para el diseño y análisis de dispositivos en alta tensión.
- Conocimiento y aplicación de métodos de diseño orientados a dispositivos en alta tensión.

CONTENIDO TEMÁTICO POR TEMAS Y SUBTEMAS

UNIDAD	TEMAS	SUBTEMAS
1	Materiales dieléctricos Tiempo: 6 horas.	 1.1 Gases aislantes: ionización, ruptura, aislamiento en aire, aislamiento en gas SF6. 1.2 Líquidos aislantes: electrificación, ruptura. 1.3 Dieléctricos sólidos: pérdidas dieléctricas, ruptura. 1.4 Aislamiento en vacío: emisión electrónica, mecanismos de ruptura. 1.5 Dieléctricos compuestos: ruptura, materiales impregnados en aceite, laminados.
2	Intensidad de campo eléctrico. Tiempo: 6 horas.	2.1 Campo en materiales homogéneos y no homogéneos. 2.2 Cálculo numérico de campo en estructuras complejas.
3	Control de intensidad de campo eléctrico. Tiempo: 12 horas.	 3.1 Predicción de voltajes de ruptura. 3.2 Límites aceptables de intensidad de campo eléctrico. 3.3 Criterios de diseño de aisladores en aire. 3.4 Criterios de diseño de interfaces.
4	Aplicaciones Tiempo: 24 horas.	4.1 Diseño de aisladores en aire: enfoques de diseño, factores operativos (contaminación, humedad). 4.2 Boquillas (pasamuros). 4.3 Cables de alta tensión: materiales, tipos, esfuerzo dieléctrico, diseño, factores operativos (pérdidas, descargas parciales, arborización). 4.4 Diseño de aislamiento de transformadores: tipos de devanado, distribución de tensiones, diseño de aislamiento. 4.5 Interruptores convencionales y aislados en gas. 4.6 Subestaciones aisladas en gas.

METODOLOGÍA DE DESARROLLO DEL CURSO

Debido a la ausencia de textos conteniendo en su totalidad los temas propuestos, es menester recurrir a múltiples fuentes. También es deseable la consideración de artículos técnicos sobre la materia.

SUGERENCIAS DE EVALUACIÓN

- Solución de casos de estudio utilizando paquetes computacionales existentes.
- Aplicación de exámenes sobre los conceptos fundamentales.
- Desarrollo de proyectos de dificultad moderada.

BIBLIOGRAFÍA Y SOFTWARE DE APOYO

- [1] R. L. Bean, N. Chackan, H. R. Moore, E. C. Wentz, *Transformers for the Electric Power Industry*, Westinghouse Electric Corporation, 1959.
- [2] R. Bartnikas, E.J. McMahon, *Engineering Dielectrics*, *Vol. I: Corona Measurement and Interpretation*, ASTM, Philadelphia, 1979.
- [3] Bradwell (Ed.), Electrical Insulation, Institution of Electrical Engineers, London, 1983.
- [4] N. H. Malik, A. A. Al-Arainy, M. I. Qureshni, Electrical Insulation in Power Systems, Marcel Dekker, New Cork, 1998.
- [5] E. Peschke, R. von Olshausen, *Cable Systems for High and Extra-High Voltage*, MCD Verlag-Pirelli, Berlin, 1999.
- [6] E. Kuffel, W. S. Zaengl, J. Kuffel, *High Voltage Engineering Fundamentals*, 2nd Edition, Newnes, Oxford, 2000.
- [7] H. M. Ryan, *High Voltage Engineering and Testing*, 2nd Edition, The Institution of Electrical Engineers, London, 2001.
- [8] W. A. Thue (Ed.), *Electrical Power Cable Engineering*, 2nd Edition, Marcel Dekker, New York, 2003.
- [9] E. Melgoza, *Paquete computacional FLD*, Instituto Tecnológico de Morelia, 1999-2005.
- [10] High Voltage Engineering Paperback May 28, 2013 M S Naidu, Prof V Kamaraju. Tata McGraw Hill Education Private Limited; 5 edition (May 28, 2013).
- [11] High Voltage Engineering and Testing (Power and Energy) 3rd Revised ed. Edition. Hugh M. Ryan. The Institution of Engineering and Technology; 3rd Revised ed. edition (November 21, 2013)

PRÁCTICAS PROPUESTAS

Las prácticas no son obligatorias sino recomendaciones para el alumno. Las prácticas sugeridas tienen la finalidad de reforzar los conceptos teóricos de la unidad correspondiente y al mismo tiempo introducir aspectos que son difíciles de apreciar sin la experiencia directa.

Unidad	Práctica
1. Cálculo de campos	Manejo de paquetes computacionales de cálculo
electrostáticos	de campo, en particular del caso electrostático.

Tiempo: 4 horas	
2. Cálculo de gradientes	Cálculo de gradientes de potencial y
de potencial	determinación de áreas críticas.
Tiempo: 4 horas	
	Modificación de perfiles para control de gradiente.
3. Control de gradientes	
Tiempo: 4 horas	
	Ejemplos de análisis y diseño electrostático
4. Ejemplos	aplicados a dispositivos particulares (cables,
Tiamena A havea	transformadores, etc.).
Tiempo: 4 horas	